Using pHousehold->VarMap and pHousehold->BaseArray

VarMap

VarMap associates the names of input and results variables with information which can be used to construct a pointer to their current values. Though rarely used in the simulation code itself, it is essential to many frame classes. Its uses include the following:

Referencing or changing a variable whose name you have in a string. Generally, this comes from a form or variable list rule.

Looping through all result variables for a simulation.

VarMap is an instantiation of the MFC class CMapStringToPtr, which was intended to map variable names, stored as strings, to 32-bit long pointers. However, it is used in a somewhat more complicated way in the frame. Do not use the 32-bit number as a pointer. In the frame, this is a concatenation of two 16-bit numbers (words). The high-order word either indicates the variable’s class and data type. The low-order word gives the variable’s offset in bytes within either the input table or CResultSet object.

For input variables, a high-order word of 0-3 indicates Household variables of various types, 4-7 Family variables, 8-11 Person variables, 12-15 Adult variables, and 16-19 Monthly variables. 20-23 are used for annual variable list rules, and 24-27 for monthly ones. 28 and higher indicate results variables.

Variable Type�
Lookup String�
�
Input�
VARIABLENAME�
�
Annual Results�
SIMULATIONID.VARIABLENAME�
�
Monthly Results�
SIMULATIONIDMONTHLY.VARIABLENAME�
�

Note that lookup strings must be in all capitals.

Type�
High Word�
Low Word�
To Construct the Pointer�
�
Household�
0-3�
Offset�
BaseArray[High] + Low�
�
Family�
4-7�
Offset�
BaseArray[High] + Low�
�
Person�
8-11�
Offset�
BaseArray[High] + Low�
�
Adult�
12-15�
Offset�
BaseArray[High] + Low�
�
AdultMonthly�
16-19�
Offset�
BaseArray[High] + Low�
�
Annual VariableList�
20-23�
Index[YEAR]�
BaseArray[High] + Low�
�
Monthly VariableList�
24-27�
Index[MONTH] * 12�
BaseArray[High] + Index[YEAR]*4 + Low�
�
Results�
28+�
Offset�
(BaseArray[High])->Result.pCurrent + Low�
�

BaseArray

BaseArray gives the address of the input structure or CResultSet object indexed by the high-order word of VarMap. Thus, indices 0-19 are input structures and higher indices refer to result sets. For input variables, you can then add the offset, the low-order word, to the address returned by BaseArray.GetAt() to get the full address of a variable. For results, things are more complicated. See example 2 below.

Index�
Pointer�
�
0-3�
&pRecord�
�
4-7�
&Family.pCurrent�
�
8-11�
&Person.pCurrent�
�
12-15�
&Adult.pCurrent�
�
16-19�
&Adult.pCurrent�
�
20-23�
&Var.pCurrent�
�
24-27�
&Var.pCurrent�
�
28+�
&ResultSet�
�

Example 1: Looping Through All Input Variables

POSITION Pos;

CString VarName;

void *pVarPtr

int Table;

int Type;

float *pVar;

For (Pos = pHousehold->VarMap.GetStartPosition(); Pos != NULL;) {

	PHousehold->VarMap.GetNextAssoc (Pos, VarName, pVarPtr);

	Table = HIWORD(pVarPtr) / 4;

	Type = HIWORD(pVarPtr) % 4;

	Offset = LOWORD (pVarPtr);

	if (Table < 5) {

	// Note that we cast pR to char * in order to do the

// Pointer arithmetic correctly.

// Remember that the offset is given in bytes.

		char *pR = *(char **)pHousehold->BaseArray.GetAt HIWORD(pVoid));

	pVar(float *)(pR + LOWORD(pVoid)));

	…

}

}

Example 2: Retrieving the Address of a Results Variable

void *pVoid;

float *pVar

CString VarName = pSim->SimulateID + “.” + Variable;

VarName.MakeUpper();

if (pHousehold->VarMap.Lookup(VarName, pVoid)) {

	// Note that we cast pR to char * in order to do the

// Pointer arithmetic correctly.

// Remember that the offset is given in bytes.

	char *pR = *(char **)pHousehold->BaseArray.GetAt HIWORD(pVoid));

	// Now we need to get a pointer to the result set for the

	// person currently being simulated.

	pR = (char *)((CResultSet *)pR->Result.pCurrent;

	pVar(float *)(pR + LOWORD(pVoid)));

	…

}

